Covering Arrays, Set Covers, Algorithms and their Complexity

Dimitris E. Simos, Ludwig Kampel, Manuel Leitner, Bernhard Garn

Generation of Covering Arrays for Abstract Combinatorial Test Suites

Covering Arrays for Combinatorial Testing
- Covering Arrays (CAs) provide the theoretical means for Combinatorial Testing (CT).
- Columns of a CA map to the parameters of a system under test.
- Rows of a CA encode the individual test cases.
- Their combinatorial properties guarantee that derived test sets cover all t-way interactions.
- To apply CT to arbitrary SUTs, we need to be able to generate arbitrary CAs.

Covering Arrays via Set Covers

Optimal Covering Arrays as Minimal Set Covers
- The Set Cover Problem is a well studied problem in theoretical CS.
- For a given universe U and a set of blocks S, i.e. subsets of U, we want to find a minimal subset of S that covers U.
- The CA generation problem can be interpreted as a Set Cover problem:
 - $U := T_\tau$, the set of all t-way interactions
 - $S := \sum_{v_i} n_i$ set of potential rows
- Then a minimal set cover represents an optimal CA

CA instance \mathcal{S} instance

Construct an optimal CA(N;2,3,2), i.e. minimal N.

Algorithm for Covering Arrays via Set Covers

- This connection allows to apply Set Cover (SC) Algorithms for CA generation.
- Some existing algorithms for CA generation can be identified as classical SC algorithms applied to CA instances.

Covering Arrays and Computational Complexity

- Formulation of CA-related problems as formal complexity problems.
- Establish connections between these problems:
 - For arbitrary but fixed t and v, it holds that
 - $\text{decSizeOMCA}(N; t, k, \{v_1, \ldots, v_k\}) \leq \text{genOMCA}_{t,v}(N; t, k, \{v_1, \ldots, v_k\})$
 - $\text{genOMCA}_{t,v}(N; t, k, \{v_1, \ldots, v_k\}) \leq \text{detSizeOMCA}(N; t, k, \{v_1, \ldots, v_k\})$
- Analyse state of the art of complexity problems related to CAs.
- Correction of statements and clarification of misinterpretation.
- The computational complexity of the Covering Array generation problem remains unknown.

Covering Arrays via Set Covers

Optimal Covering Arrays as Minimal Set Covers
- The Set Cover Problem is a well studied problem in theoretical CS.
- For a given universe U and a set of blocks S, i.e. subsets of U, we want to find a minimal subset of S that covers U.
- The CA generation problem can be interpreted as a Set Cover problem:
 - $U := T_\tau$, the set of all t-way interactions
 - $S := \sum_{v_i} n_i$ set of potential rows
- Then a minimal set cover represents an optimal CA

CA instance \mathcal{S} instance

Construct an optimal CA(N;2,3,2), i.e. minimal N.

Algorithm for Covering Arrays via Set Covers

- This connection allows to apply set Cover (SC) Algorithms for CA generation.
- Some existing algorithms for CA generation can be identified as classical SC algorithms applied to CA instances.

Covering Arrays and Computational Complexity

- Formulation of CA-related problems as formal complexity problems.
- Establish connections between these problems:
 - For arbitrary but fixed t and v, it holds that
 - $\text{decSizeOMCA}(N; t, k, \{v_1, \ldots, v_k\}) \leq \text{genOMCA}_{t,v}(N; t, k, \{v_1, \ldots, v_k\})$
 - $\text{genOMCA}_{t,v}(N; t, k, \{v_1, \ldots, v_k\}) \leq \text{detSizeOMCA}(N; t, k, \{v_1, \ldots, v_k\})$
- Analyse state of the art of complexity problems related to CAs.
- Correction of statements and clarification of misinterpretation.
- The computational complexity of the Covering Array generation problem remains unknown.

Covering Arrays via Set Covers

Optimal Covering Arrays as Minimal Set Covers
- The Set Cover Problem is a well studied problem in theoretical CS.
- For a given universe U and a set of blocks S, i.e. subsets of U, we want to find a minimal subset of S that covers U.
- The CA generation problem can be interpreted as a Set Cover problem:
 - $U := T_\tau$, the set of all t-way interactions
 - $S := \sum_{v_i} n_i$ set of potential rows
- Then a minimal set cover represents an optimal CA

CA instance \mathcal{S} instance

Construct an optimal CA(N;2,3,2), i.e. minimal N.

Algorithm for Covering Arrays via Set Covers

- This connection allows to apply set Cover (SC) Algorithms for CA generation.
- Some existing algorithms for CA generation can be identified as classical SC algorithms applied to CA instances.

Covering Arrays and Computational Complexity

- Formulation of CA-related problems as formal complexity problems.
- Establish connections between these problems:
 - For arbitrary but fixed t and v, it holds that
 - $\text{decSizeOMCA}(N; t, k, \{v_1, \ldots, v_k\}) \leq \text{genOMCA}_{t,v}(N; t, k, \{v_1, \ldots, v_k\})$
 - $\text{genOMCA}_{t,v}(N; t, k, \{v_1, \ldots, v_k\}) \leq \text{detSizeOMCA}(N; t, k, \{v_1, \ldots, v_k\})$
- Analyse state of the art of complexity problems related to CAs.
- Correction of statements and clarification of misinterpretation.
- The computational complexity of the Covering Array generation problem remains unknown.