Covering Arrays, Set Covers, Algorithms and their Complexity

Dimitris E. Simos, Ludwig Kampel, Manuel Leithner, Bernhard Garn

Generation of Covering Arrays for Abstract Combinatorial Test Suites

Covering Arrays for Combinatorial Testing

- Covering Arrays (CAs) provide the theoretical means for Combinatorial Testing (CT)
- Columns of a CA map to the parameters of a system under test.

The Covering Array Generation Problem

- Rows of a CA encode the individual test cases.
- Their combinatorial properties guarantee that derived test sets **cover** all *t*-way interactions.
- To apply CT to arbitrary SUTs, we need to be able to generate arbitrary CAs.

- \triangleright Given a strength t, a number of columns k and the respective columns' alphabet sizes v_1, \ldots, v_k .
- **Construct** a (mixed) covering array MCA($N; t, k, (v_1, \ldots, v_k)$) minimizing the number of rows N.
- Exact and direct constructions of CAs exist only for some corner cases.
- For general applications we need heuristic algorithms for arbitrary CA generation.

Covering Arrays via Set Covers

Optimal Covering Arrays as Minimal Set Covers

- The Set Cover Problem is a well studied problem in theoretical CS.
- For a given universe U and a set of blocks S, i.e. subsets of U, we want to find a minimal subset of S that covers U.
- The CA generation problem can be interpreted as a Set Cover problem:
 - \triangleright $U := T_t$ the set of all *t*-way interactions
 - $\triangleright S := \prod_{i=1}^{k} [v_i]$ set of potential rows
 - Then a minimal set cover represents an optimal CA

CA instance

SC instance

Covering Arrays and Computational Complexity

- Formulation of CA-related problems as formal complexity problems.
- Establish connections between these problems:
 - For arbitrary but fixed t and v, it holds that
 - (i) decSizeOMCA_{t,v} \leq_{P}^{T} detSizeOMCA_{t,v} \leq_{P}^{T} genOMCA_{t,v}. (ii) decSizeOMCA_{t,v} \equiv_{P}^{T} detSizeOMCA_{t,v}.
- Analyse state of the art of complexity problems related to CAs.
- Correction of statements and clarification of misinterpretation.
- The computational complexity of the Covering Array generation problem remains unknown.

Algorithms for Covering Arrays via Set Covers

- This connection allows to apply Set Cover (SC) Algorithms for CA generation.
- Some existing algorithms for CA generation can be identified as classical SC algorithms applied to CA instances.

Classes of	Decide	Decide	Determine	Generation
Covering Arrays	Existence	Size	Size	
optimal CA _{2,2}	Р	Р	Р	Р
optimal CA _{t,v}	Р	NP	???	???
optimal MCA _{t,v}	Р	NP	???	???
optimal BS _d	Р	NP-complete	NP-hard	NP-hard
optimal VCA $_{ au,2}$	Р	NP-complete	NP-hard	NP-hard
optimal VCA $_{ au, oldsymbol{ u}}$	Р	NP	???	???
optimal VCA $_{ au}$	Р	NP-hard	NP-hard	NP-hard
optimal CA(G)	Р	NP-complete	NP-hard	NP-hard
CAFE	NP-complete	NP-hard	NP-hard	NP-hard

slicedAETG: A specialized Algorithm for CA construction

- The CA generation problem has more inherent structure compared to the general Set Cover problem.
- This can be exploited in order to devise more efficient algorithms.
- The slicedAETG algorithm is a specialization of a general greedy algorithm that is tailored to suite the CA generation problem.

Allowing to import approximations and bounds for CAs:

$N \leq MCAN(N; t, k, v) \cdot \log \binom{k}{t}$

This connection can be generalized to weighted budgeted instances pertaining to **weighted budgeted CA construction**.

Schematics how different algorithms process the set of all *t*-way interactions \mathbb{T}_t .

	\geq # Rows	Runtime		Memory for <i>T</i>
gAETG	$\mathbf{v}^t \ln(\mathbf{v}^t {k \choose t}) + 1$	0	$\left(\mathbf{v}^{\mathbf{k}+\mathbf{t}} \mathbf{t}^{\mathbf{k}}_{\mathbf{t}} \right) \ln(\mathbf{v}^{\mathbf{t}}^{\mathbf{k}}_{\mathbf{t}}) \right)$	$\Theta(\mathbf{v}^t {k \choose t})$
slicedAETG	$\mathbf{v}^{t+1}\ln(\mathbf{v}^{t-1}\binom{\mathbf{k}}{t}) + \mathbf{v}$	0	$\left(\mathbf{v}^{\mathbf{k}+\mathbf{t}} \mathbf{t}^{\mathbf{k}}_{\mathbf{t}} \right) \ln(\mathbf{v}^{\mathbf{t}-1}^{\mathbf{k}}_{\mathbf{t}}) \right)$	$\Theta(\mathbf{v}^{t-1} {k \choose t})$
paraslicedAETG	$\mathbf{v}^{t+1}\ln(\mathbf{v}^{t-1}\binom{\mathbf{k}}{t}) + \mathbf{v}$	0	$\left(\boldsymbol{\nu}^{\boldsymbol{k}+\boldsymbol{t}-1} \boldsymbol{t} {\binom{\boldsymbol{k}}{\boldsymbol{t}}} \ln(\boldsymbol{\nu}^{\boldsymbol{t}-1} {\binom{\boldsymbol{k}}{\boldsymbol{t}}}) \right)$	$\Theta(\mathbf{v}^{t-1} {k \choose t})$

Bounds on number of rows of output CAs, runtime and memory usage.

Ludwig Kampel, Bernhard Garn, and Dimitris E. Simos. Covering arrays via set covers. *Electronic Notes in Discrete Mathematics*, 65:11 – 16, 2018. 7th International Conference on Algebraic Informatics (CAI 2017): Design Theory Track. Ludwig Kampel, Manuel Leithner, Bernhard Garn, and Dimitris E. Simos. Problems and algorithms for covering arrays via set covers. Theoretical Computer Science, 800:90 – 106, 2019. Special issue on Refereed papers from the CAI 2017 conference. Ludwig Kampel, Manuel Leithner, and Dimitris E Simos. Sliced aetg: a memory-efficient variant of the aetg covering array generation algorithm. Optimization Letters, 2019. Ludwig Kampel and Dimitris E. Simos. A survey on the state of the art of complexity problems for covering arrays. Theoretical Computer Science, 800:107 – 124, 2019. Special issue on Refereed papers from the CAI 2017 conference.

SBA Research (SBA-K1) is a COMET Centre within the framework of COMET – Competence Centers for Excellent Technologies Programme and funded by BMK, BMDW, and the federal state of Vienna. The COMET Programme is managed by FFG.