IPO-MAXSAT: Combining the In-Parameter-Order Strategy for Covering Array Generation with MaxSAT solving

Irene Hiess, Ludwig Kampel, Michael Wagner, Dimitris E. Simos

Generation of Covering Arrays for Abstract Combinatorial Test Suites

Covering Arrays for Combinatorial Testing
- Covering Arrays (CAs) provide the theoretical means for Combinatorial Testing (CT).
- Columns of a CA map to the parameters of a system under test (SUT).
- Rows of a CA encode the individual test cases.
- Their combinatorial properties guarantee that derived test sets cover all t-way interactions.
- To apply CT to arbitrary SUTs, we need to be able to generate arbitrary CAs.

The Covering Array Generation Problem
- Given a strength t, a number of columns k and an alphabet size v.
- Construct a covering array CA((v); t, k, v) minimizing the number of rows N.
- Exact and direct constructions of CAs exist only for some corner cases.
- For general applications we need heuristic algorithms for arbitrary CA generation.

Input Model
Test Set Generator
t-way Test Set
Test Execution
Execution Oracle
Locating Faults

The IPO Strategy for CA Generation
- A popular method for CA generation, realized in many algorithms.
- An array is extended horizontally and, if necessary, vertically until the desired CA is generated.
- Initialization: A $v \times t$ array is initialized with all $v \times t$-tuples.
 - First four rows of columns a and b in Figure 1.
- Horizontal extension: The CA is extended with an additional column.
 - A greedy construction attempts to cover many t-way interactions.
 - Blue (new column) in Figure 1.
- Vertical extension: If any t-way interactions are not covered, then star-values can be assigned and the array is extended with new rows until all t-way interactions are covered.
 - Red (star-values) and green (new rows) in Figure 1.
- Star-values: Array cells that are not yet assigned a value. New rows in vertical extension are initialized with star-values.

Results & Lessons learned
- We compare against:
 - SIPO: IPO strategy with Simulated Annealing [1];
 - FIPOG: a state-of-the-art IPO algorithm for CA generation [2];
 - NIST Tables: largest online repository of CAs [3], generated with IPOG-F [4];
 - CA Tables: the best known upper bound on the number of rows N for which a CA CA((v); t, k, v) exists [5].
- We present experimental results for CA((v); 3, k, 2):

<table>
<thead>
<tr>
<th>Number of columns k</th>
<th>Number of rows N</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

Figure 1: Schematics of the IPO strategy for a binary CA ($v = 2$) of strength $t = 2$.

Figure 2: Size (number of rows N) of generated CA((v); 3, k, 2) for $k \leq 47$.

Figure 3: Runtimes in seconds for generating a CA((v); 3, k, 2) for $k \leq 47$.

IPO-MAXSAT
- Idea: Use MaxSAT solvers to find optimal horizontal extensions
- translate MaxSAT instance:
 $\{\neg x_1 \vee \neg x_2, \ldots, (20 \cdot x_1 \vee x_3 \vee x_6)\}$
- solve MaxSAT model:
 $\{0,1,0,1,1,...\}$
- Star-value optimization is included in horizontal extension.
- Soft clauses encode our optimization goals:
 - Primary objective: Cover a maximal number of t-way interactions.
 - Secondary objective: Keep as many star-values as possible.

[2] Kristoffer Kleine and Dimitris E. Simos. An efficient design and implementation of the in-parameter-order algorithm. For Abstract Combinatorial Test Suites
- Generation of Covering Arrays for Combinatorial Testing

- Primary objective: Cover a maximal number of t-way interactions.
- Secondary objective: Keep as many star-values as possible.

SBA Research (08.14.8) is a COMET Centre within the framework of COMET – Competence Centers for Excellent Technologies Programme and funded by BMW, BMVIT, and the federal state of Vienna. The COMET Programme is managed by FFG.