Combinatorial sequences for the generation of crisis exercises

Bernhard Garn, Klaus Kieseberg, Dominik Schreiber, Dimitris E. Simos

Scenarios for crisis exercises

The effects of crisis events on a system are dependent on certain parameters, such as the order in which they appear, with specific sequences of events even potentially leading to critical failures.

In order to evaluate a systems resilience against crises, it is therefore imperative to examine and train as many different sequences of crisis events

as possible within scenarios as part of exercises.

Figure 1: Two different sequences of events.

Goals of crisis exercises

- Planning of ressource requirements, allocation and distribution.
- Identification of critical scenarios.
- Development and evaluation of relief strategies.
- Training and preparation of emergency personnel for actual crises.

Methodology

Combinatorial framework for crisis exercises

We present a general conceptual modelling- and scenario generation framework based on methods from discrete mathematics used for the **automated generation of crisis exercises**.

- Combinatorial sequence structures provide broad range of modelling capabilities to exercise designers.
- Exercises generated using combinatorial methods satisfy different notions of combinatorial sequence coverage and thus enable the detection of sequence specific errors and vulnerabilities.
- Applicable to man-made and non-man-made crises.

Framework			
Linking the two domains		Combinatorial generati	on of scenarios
Disaster exercise domain	Combinatorial sequence testing domain	Scenarios	Sequences

- Identification of suitable crisis events by domain experts.
- Selection of desired scenario and exercise characteristics.
- Selection of appropriate class of sequence structures satisfying all required properties, e.g. Sequence Covering Arrays (SCAs).
- Automated generation of a combinatorial sequence structure based on the previous selection.
- The elements of the structure define the scenarios of the exercise.
- Carry out the scenarios within a crisis management exercise.

Exercise	Sequence test set (i.e., SCA of strength <i>t</i> or <i>t</i> -way sequence test set with constraints)			
Exercise complexity	Strength t			
Scenario	Element in sequence test set			
Scenario length	Length of test sequence			
Story	<i>t</i> -way permutation or target sequence of length <i>t</i> Event symbols			
Events				
Multiplicities of events in scenarios	Repetition of event symbols in sequences by con-			
	straints			
Constraints between events	Constraints between event symbols			

	Scenario 1	Α	В	\mathbf{C}	D	\mathbf{E}	F
	Scenario 2	D	Α	F	С	Е	В
	Scenario 3	В	D	Е	Α	С	F
	Scenario 4	Е	D	В	F	С	Α
-	Scenario 5	Е	С	Α	F	В	D
	Scenario 6	С	В	F	Ε	Α	D
	Scenario 7	F	Α	Е	D	В	С
	Scenario 8	F	С	D	В	Α	E

Figure 2: Generation of crisis scenarios via SCAs.

Future work

- Practical evaluation of the proposed approach for different types of exercises (Planspiele, drills, ...) for man-made as well as non-man-made disasters.
- Broadening, extending and strengthening the employed combinatorial structures to accommodate additional scenario requirements (e.g. interdependencies and constraints of events, prioritisation of scenarios).
- Using combinatorially generated scenarios as input to simulations.
- Integration of precise coverage guarantees provided by different notions of combinatorial sequence coverage into general vulnerablility, risk and impact analysis assessments of crisis threats.

SBA Research (SBA-K1) is a COMET Centre within the framework of COMET – Competence Centers for Excellent Technologies Programme and funded by BMK, BMDW, and the federal state of Vienna. The COMET Programme is managed by FFG.