Combinatorial sequences for the generation of crisis exercises

Bernhard Garn, Klaus Kieseberg, Dominik Schreiber, Dimitris E. Simos

Scenarios for crisis exercises

The effects of crisis events on a system are dependent on certain parameters, such as the order in which they appear, with specific sequences of events even potentially leading to critical failures.

In order to evaluate a system's resilience against crises, it is therefore imperative to examine and train as many different sequences of crisis events as possible within scenarios as part of exercises.

Goals of crisis exercises

- Planning of resource requirements, allocation and distribution.
- Identification of critical scenarios.
- Development and evaluation of relief strategies.
- Training and preparation of emergency personnel for actual crises.

Combinatorial framework for crisis exercises

We present a general conceptual modelling- and scenario generation framework based on methods from discrete mathematics used for the automated generation of crisis exercises.

- Combinatorial sequence structures provide broad range of modelling capabilities to exercise designers.
- Exercises generated using combinatorial methods satisfy different notions of combinatorial sequence coverage and thus enable the detection of sequence specific errors and vulnerabilities.
- Applicable to man-made and non-man-made crises.

Methodology

- Identification of suitable crisis events by domain experts.
- Selection of desired scenario and exercise characteristics.
- Selection of appropriate class of sequence structures satisfying all required properties, e.g. Sequence Covering Arrays (SCAs).
- Automated generation of a combinatorial sequence structure based on the previous selection.
- The elements of the structure define the scenarios of the exercise.
- Carry out the scenarios within a crisis management exercise.

Framework

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Sequence</th>
<th>Combinatorial generation of scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario</td>
<td>Sequence</td>
<td>Combinatorial generation of scenarios</td>
</tr>
</tbody>
</table>

Crisis events \{A, B, C, D, E, F\}

Figure 2: Generation of crisis scenarios via SCAs.

Future work

- Practical evaluation of the proposed approach for different types of exercises (Planspiele, drills, ...) for man-made as well as non-man-made disasters.
- Broadening, extending and strengthening the employed combinatorial structures to accommodate additional scenario requirements (e.g. interdependencies and constraints of events, prioritisation of scenarios).
- Using combinatorially generated scenarios as input to simulations.
- Integration of precise coverage guarantees provided by different notions of combinatorial sequence coverage into general vulnerability, risk and impact analysis assessments of crisis threats.