

COMBINATORIAL METHODS FOR TESTING AND ANALYSIS OF COMPLEX SYSTEMS

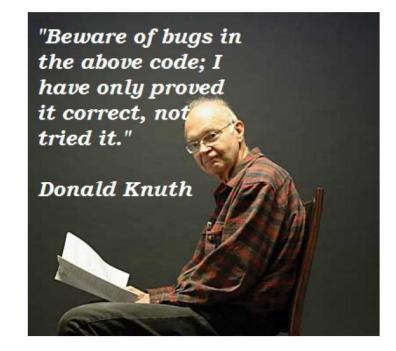
Dimitris Simos

MATRIS Research Group, SBA Research, Austria Institute of Software Technology, Graz University of Technology, Austria Information Technology Laboratory, National Institute of Standards and Technology, USA

Lecture Series of the Research Institute for Supply Chain Management Winter Semester 2024/2025, October 18, 2024, WU Wien

Outline

- 1. Combinatorial Testing
- 2. Testing of **Complex Systems**
- 3. Future Outlook



Combinatorial Testing

Introduction

Should we care about Software (Systems) Testing?

- Proving correctness seems to be not quite enough
- **Testing** is required: both on the sides of verification and validation!
 - "The process of analyzing a software system to detect the differences between existing and expected conditions (that is, bugs)" [IEEE]

MATRIS Should we really care about Software (Systems) Testing?

Finding 90% of flaws is pretty good, right?

"Relax, our engineers found 90 percent of the flaws." I don't think I want to get on that plane.

A Large Example for Testing

- Suppose we have a system with on-off switches
- 34 switches = $2^{34} = 1.7 \times 10^{10}$ possible settings

• How do we test this system?

Example of a Mathematical Structure used in Testing

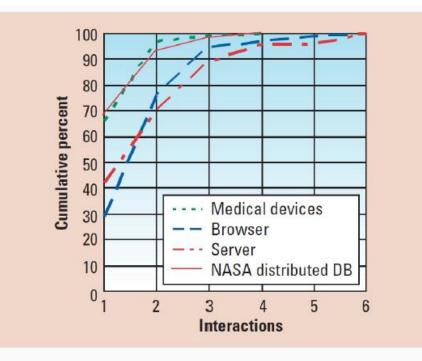
System Under Test (SUT) with 3 Boolean Input Parameters a, b, c

- Could be function, application, configuration file, etc.
- Exhaustive test set: 2³ = 8 tests
- 2-way covering array (test set): 4 tests

			(a, b)		
0	0	0	(0, 0) (0, 1) (1, 0) (1, 1)	(0, 0)	(0, 0)
0	1	1	(0, 1)	(1, 1)	(0, 1)
1	0	1	(1, 0)	(0, 1)	(1, 1)
1	1	0	(1, 1)	(1, 0)	(1, 0)

Table 1: 2-way test set (left) covering all pairs of parameters (right)

Covering Arrays CA(N; t, k, v) of Strength t


- Cover all *t*-way combinations of *k* input parameters at least once
- Input parameters have *v* total values each
- Such a mathematical object has *N* total rows (tests)

How is this Knowledge Useful?

- · Recall the system with on-off switches
- 34 switches = $2^{34} = 1.7 \times 10^{10}$ possible settings
- Assumption: What if we knew no failure involves more than 3 switch settings interacting?
 - If only 3-way combinations, need a CA with only 33 tests
 - If only 4-way combinations, need a CA with only 85 tests

Empirical Evidence: Fault Coverage vs. Interactions

- The maximum degree of interaction observed so far in actual real-world faults is **relatively** small (six)
 - 2-way interaction: age > 100 and zip-code = 5001, DB push fails
- Most failures are induced by single factor faults or by the joint combinatorial effect (interaction) of two factors, with progressively fewer failures induced by interactions between three or more factors

Combinatorial Testing (CT)

What is Combinatorial Testing? Combinatorial Strategy for Higher Interaction Testing ($t \ge 2$)

Where it can be Applied? To system configurations, input data or both

Key Facts:

- CT utilizes 100% coverage of t-way combinations of k input data or system configuration parameters
- Coverage is provided by mathematical objects (covering arrays), that are later <u>transformed to software artifacts</u>
- t-way tests that cover all such few parameter (factor) interactions can be very effective and provide strong assurance

Combinatorial Testing of a Server Configuration

Example

Application must run on any configuration of OS, browser, protocol, CPU and DBMS (very efficient for interoperability testing)

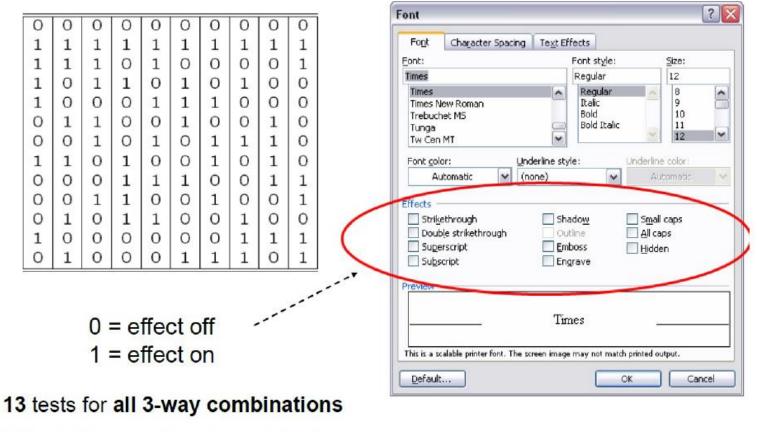

Test	OS	Browser	Protocol	CPU	DBMS
1	XP	IE	IPv4	Intel	MySQL
2	XP	Firefox	IPv6	AMD	Sybase
3	XP	IE	IPv6	Intel	Oracle
4	OS X	Firefox	IPv4	AMD	MySQL
5	OS X	IE	IPv4	Intel	Sybase
6	OS X	Firefox	IPv4	Intel	Oracle
7	RHEL	IE	IPv6	AMD	MySQL
8	RHEL	Firefox	IPv4	Intel	Sybase
9	RHEL	Firefox	IPv4	AMD	Oracle
10	OS X	Firefox	IPv6	AMD	Oracle

Figure: Pairwise test configurations

Combinatorial Testing of a Word-Processing App

Example

Testing of a word-processing application having 10 effects to highlight text (each can be on or off)

2¹⁰ = 1,024 tests for all combinations

Motivation for Combinatorial Testing of Complex Systems

- Economic Impact: Software testing may consume up to half of the overall software development cost ("system of systems view")
 - **Combinatorial explosion:** Exhaustive search of input space increases time needed exponentially
 - Added level of complexity for system testing (modelling real-world environments)
 - CT can provide minimal tests which provides for ~99% reduction of test set sizes => Reduced testing budget by several orders of magnitude => significantly less costs
- How can we estimate the residual risk that remains after testing? How can we guarantee aspects of test quality (e.g. test coverage, locating faults)?
- In this Talk: Formulate testing problems as combinatorial problems and then use efficient methods to tackle them

Topic - Software 🔹 🛉 in 🗙 📾

Report: Software failure caused \$1.7 trillion in financial losses in 2017

		~	Wenned	by
ublished January	26, 2018	1 2~	Scott	Mattesor

Software testing company Tricentis found that retail and consumer technology were the areas most affected, while software failures in public service and healthcare were down from the previous year.

Testing of Complex Systems

R&D Examples in System Testing

Testing of an F-16 Lantirn Pod

- Problem: Unknown factors causing failures of F-16 ventral fin
- LANTIRN pod carriage on the F-16

F-16 Ventral Fin Damage on Flight with LANTIRN

It's not supposed to look like this:

Input Model for Testing of F-16 Ventral Fin

- Original solution: Lockheed Martin engineers spent many months with wind tunnel tests and expert analysis to consider interactions that could cause the problem
- CT solution: modelling and simulation using ACTS/CAgen

Parameter	Values
Aircraft	15, 40
Altitude	5k, 10k, 15k, 20k, 30k, 40k, 50k
	hi-speed throttle, slow accel/dwell, L/R 5 deg side slip, L/R 360 roll, R/L 5 deg side slip, Med accel/dwell, R-L-R-L banking, Hi-speed to Low,
Maneuver	360 nose roll
Mach (100th)	40, 50, 60, 70, 80, 90, 100, 110, 120

Combinatorial Testing for Aerospace Industry

Input Model for CT

- 4 Parameters
- Number of values: 2, 7, 9, 9
- Total space (exhaustive testing): 1134 tests

Combinatorial Testing

- 2-way: 81 tests (=> ~93% reduction)
- 3-way: 567 tests (=> 50% reduction)


How does this translate in real-life Budget Costs?

- Costs of executing one test:
 - A Lockheed engineer costs \$ 75 / hour
 - 3 engineers / 1 day (10hours each) => \$ 2,250
- Costs of executing exhaustive test set: \$ 2,551,500
- Combinatorial-based testing (NIST study) costs:
 - 2-way: \$ 182,250 => only ~7% of total costs
 - 3-way: \$ 1,275,750 => only 50% of total costs

Aircraft	Altitude	- Maneuver	🚽 Mach (100th) 📮
15	 5k	hi-speed throttle	40
40	10k	hi-speed throttle	50
15	15k	hi-speed throttle	60
40	20k	hi-speed throttle	70
15	30k	hi-speed throttle	80
40	40k	hi-speed throttle	90
15	50k	hi-speed throttle	100
40	5k	hi-speed throttle	110
15	10k	hi-speed throttle	120
40	15k	slow accel/dwell	40
15	20k	slow accel/dwell	50
40	30k	slow accel/dwell	60
15	40k	slow accel/dwell	70
40	50k	slow accel/dwell	80
15	5k	slow accel/dwell	90
40	10k	slow accel/dwell	100
15	15k	slow accel/dwell	110
40	20k	slow accel/dwell	120
15	30k	L/R 5 deg side slip	40
40	40k	L/R 5 deg side slip	50

Excerpt of 2-way test set (demo, if time allows)

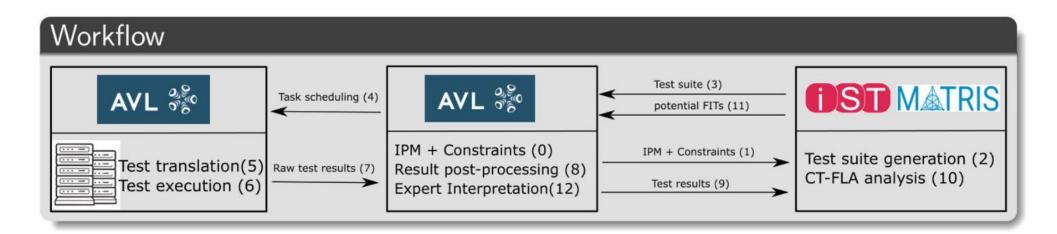

Virtual Driving Function Testing Problem

Tesla must provide NHTSA with Autopilot recall data by July or face up to \$135 million in fines

Iora ein/L	Kolodny Orakolodny/		SHARE	fϪ	in	\mathbf{M}
WI Beh	KIPEDIA	Q. Search Wikipedia	Search			

Monatan Wee, Caterna, URHTSA), which has orgued the Telak) Kalagates, Japan (Ant 29, 2016) URA (USA), Alamo 1, 2016 URA (

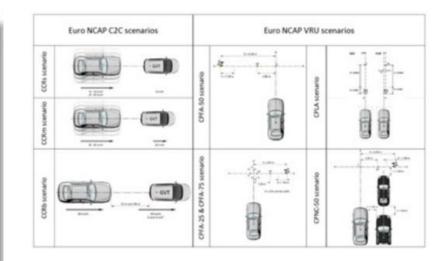
Key Largo, Florida, USA (April 25, 2019) Fremont, California, USA (August 24, 2019) inve Read Edit View history Tools

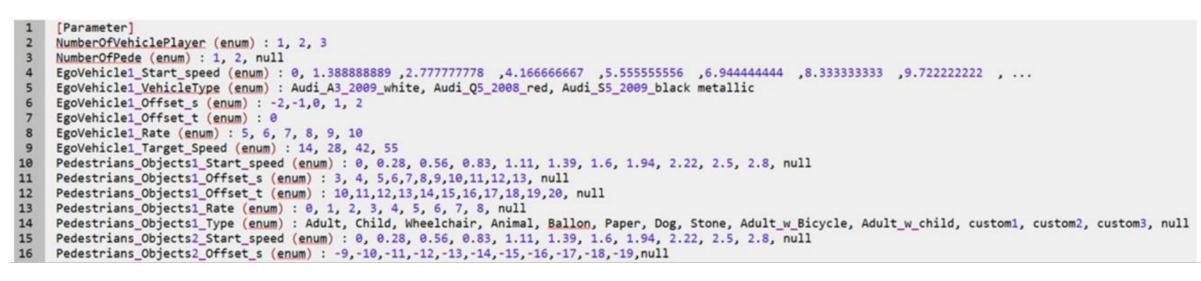


As of June 2024, there have been forty-four verified fatalities involving Autopilot^[2] and hundreds of nonfratial nicidents.¹¹Collectively, these have lad to a formal investigation by the NHTSA, cummating in a general recall in December 2023 of all vehicles equipped with Autopilot, which was resolved by an over-the-air software update. Immediately after closing its investigation in April 2024, NHTSA opened a recail query to determine the effectiveness of the recail.

AEB Function Testing

Mapping and testing workflow

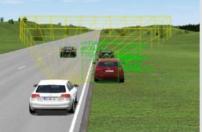

Combinatorial Testing	Automated Driving Function Testing
System under test (SUT)	AEB function
Input-parameter model (IPM)	Driving scenario specification
Test/row of CA	Driving scenario
Test execution	Simulation of driving scenario
Execution oracle (oracle)	Time-to-collision (TTC)
Passing test	Non-crash scenario $(TTC > 0)$
Failing test	Crash scenario $(TTC = 0)$
Failure inducing t-way interaction (FIT)	Crash inducing parameter setting

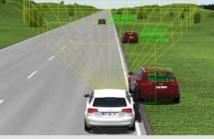

Virtual Driving Scenarios

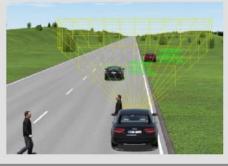
IPM for Driving Scenarios

- Developed and used in previous works (Wotawa et al.^a)
- Description of traffic situation via parameters + values
 - Speed of the car: EgoVehicle1_Start_speed
 - Type of car: EgoVehicle1_VehicleType
 - Position of the car: EgoVehicle1_Offset_s
 - Number of pedestrians: NumberOfPede
- Resulting IPM consists of 39 parameters & 42 constraints:

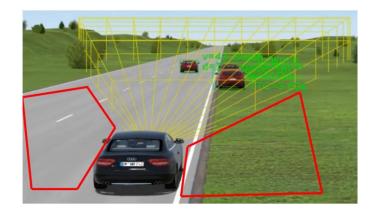
(3, 3, 31, 3, 5, 1, 6, 4, 12, 12, 12, 10, 14, 12, 12, 12, 10, 14, 31, 4, 3, 20, 9, 3, 3, 31, 4, 3, 20, 9, 3, 3, 31, 4, 3, 20, 9, 3, 3)


Analysis of Potential Crash Scenarios


- We generated 39061 driving scenarios of which **7928 are failing (high percentage of failing test cases)**
- In > 46 tests specific **3-way failure patterns** appear (from a CT point of view)
- An AVL engineer reviewed these 46 CT generated scenarios and evaluated them visually (e.g. ones where EgoVehicleOffset=2, Pedetstrian1StartSpeed={0.56, 0.28}, Pedestrian1OffSet={3,4} appear)


Relative Frequency Analysis

EgoVehicleOffset=2 Pedestrain1StartSpeed=0.28 Pedestrain1Offset=4



EgoVehicleOffset=2 Pedestrain1StartSpeed = 0.56Pedestrain1Offset=3

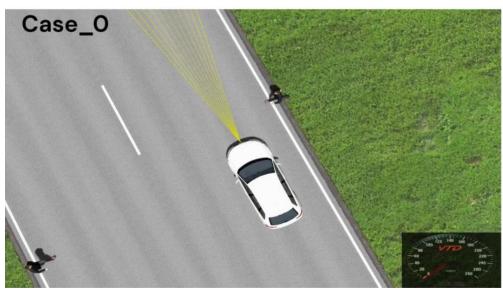
MATRIS

Comments from the domain expert

- Large majority of crashes are side-wards
- Simulation uses ideal object sensor
 - No detection issues if object field of view (yellow)
- Objects outside this area (red area) are not detected.
- Scenario specifications, i.e. parameter values that impact the position (offset) of the ego vehicle and relevant objects to the side of the ego vehicle contribute more towards outcomes with a collision.



Inspection of Individual Crash Scenario


One Factor at a Time (OFAT) Strategy

- Consider single crash scenario
- Change every parameter to all other values one by one
- \Rightarrow >6-way interaction identified
 - (-,-,-,-,1,-,-,-,-,1.39,-,-,
 - tests (roughly 10^{26})

EgoVehicle1_ Offset_s	Pedestrains_ -Objects1_Sta rt_speed	Pedestrains_ Objects1_Off set_s	Pedestrains_ fObjects1_Off set_t	Pedestrains_ Objects2_Off set_s	Vehicles_Pla yers2_Offset _t	Oracle
1	1.39	10	20	-18	65	crash
0	1.39	10	20	-18	65	non-crash
1	0	10	20	-18	65	non-crash
1	1.39	3	20	-18	65	non-crash
1	1.39	10	10	-18	65	non-crash
1	1.39	10	20	-9	65	non-crash
1	1.39	10	20	-18	15	non-crash

MATRIS

From Technology to Practice: CAGen Test Generation Tool (Greedy/Parallel/Quantum Computing Algorithms)

CAgen			Input Parameter Model	
Vorkspaces	¢			Export IPM
vvoi kspaces		Name	Values	Cardina
Input Parameter Model	Ê	PAY	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23	23
Generate	¢ °	JSO	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15	15
		INT	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14	14
		PAS	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11	11
		JSE	1, 2, 3, 4, 5, 6, 7, 8, 9	9
		WS1	1, 2, 3	3
		WS2	1, 2, 3	з
		EVH	1, 2, 3	з
		WS3	1, 2, 3	з
		WS4	1, 2, 3	З
		WS5	1, 2, 3	з
Help	?	+	Add Type - Name	
Release Notes	Ê	Constrain	nts	
About	i	EVH=	'5" => JSE="5" JSE="6" JSE="7" JSE="8" JSE="9" '1" => PAY="12" PAY="14" PAY="17" PAY="18" PAY="19" WS2 && WS2=WS3 && WS3=WS4 && WS4=WS5	
Downloads	<u>*</u>			
SBA Research 2018-2020 All Righ Reserved.	ts			

SUCCESS STORY

MATRIS

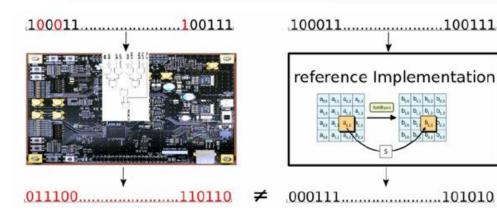
Programme: COMET – Competence Centers for Excellent Technologies

Programme line: COMET-Centre K1

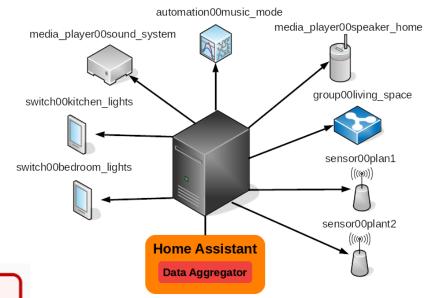
Type of project: strategic

SUPERIOR SOFTWARE TESTING EFFICIENCY WITH QUALITY GUARANTEES

TOOL COMPETITION AT LEADING COMBINATORIAL TESTING CONFERENCE CROWNS CAGEN AS BEST GENERAL-PURPOSE COVERING ARRAY GENERATOR



Combinatorial Security Testing (CST) Joint Research Programme MATRIS/US NIST


Proven method: automated testing for security

- Complex web applications
- Next generation protocol testing (IoT: z-wave, zigbee)
- Intelligent and autonomous systems
- Hardware Trojan Horse detection

Combinatorial methods can make **software security testing** much more **efficient** and effective than conventional approaches

src="invalid"

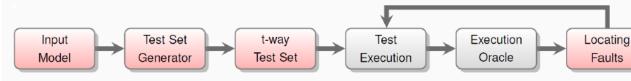
1.1

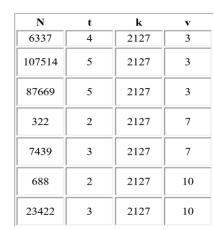
'>

\>

Large-scale Combinatorial Testing at Adobe

_	а	b	С	(a, b)	(b, c)	(a, c)
-	0	0	0	(0, 0)	(0, <mark>0</mark>)	(0, 0)
	0	1	1	(0, 1)	(1, 1)	(0, 1)
	1	0	1	(1, 0)	(0, 1)	(1, 1)
	1	1	0	(1, 1)	(1, 0)	(1, 0)




Table: 2-way test set (left) covering all pairs of parameters (right)

Simplified testing process (CT-dependent parts in red) for given SUT

Combinatorial Testing applied to Large-scale Data Processing at Adobe

- Application of largest combinatorial test sets documented in research
- Test sets combined from theoretical and algorithmic constructions
- New faults found in each subject systems; small number of tests

(R)

MATRIS		Fa	ult Descriptions, Ca Resolutions	uses, and
	Description	t-way	Cause	Resolution
	Flag-type fields throw error	2	Undocumented value constraint	Update input space model
SBA Research	Event-type fields throw error	2	Undocumented format constraint	Update input space model
	Parser throws error (CDS)	2	Undocumented value constraint	Update input space model
NIST	Parser throws error (JSON)	3	Undocumented format constraint	Add input validation
National Institute of Standards and Technology	Invalid date fields interaction	2	Undocumented value constraint	Update input space model

Large-scale Combinatorial Testing at NASA

			(a, b)		
0	0	0	(0, 0) (0, 1) (1, 0) (1, 1)	(0, <mark>0</mark>)	(0, 0)
0	1	1	(0, 1)	(1, 1)	(<mark>0</mark> , 1)
1	0	1	(1, 0)	(0, 1)	(1, 1)
1	1	0	(1, 1)	(1, <mark>0</mark>)	(1, 0)

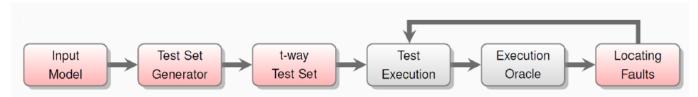
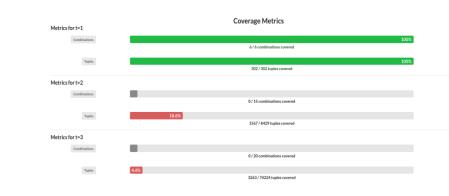
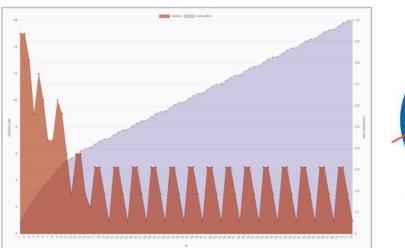



Table: 2-way test set (left) covering all pairs of parameters (right)


Simplified testing process (CT-dependent parts in red) for given SUT

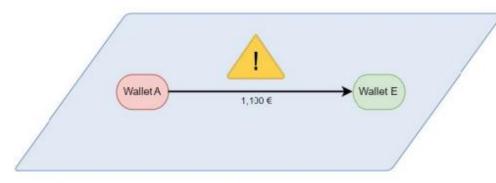
Extraction of Input Parameter Models from existing unit tests in NASA's Core Flight System (cFS) software

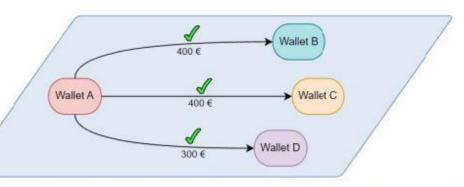
- Generation of test cases using combinatorial means (i.e. *t-way testing*) and their execution
- Combinatorial coverage of existing tests

Coverage Gain per Test

Future Outlook

Combinatorial Methods beyond System Testing


Combinatorial Methods **beyond** System Testing Pattern identification in other research domains


- Patterns appear in Every Instance of a Complex System
- [recap] Software (Systems) Engineering (Software Systems)
 - Software/System Failures => t-way Faults (CT)
- FinTech (Financial Transactions)
 - Money Laundering Transactions => Integer Partitions
- Operations Research (Supply Chains)
 - Crisis Scenarios in Production Facilities => Seq. Covering Arrays
- Disaster Management (Natural/Technological Hazards)
 - Compound and Cascading Effects in Disasters => Permutation Sequences

Combinatorial Methods for (Anti-) Money Laundering

Problem: Given an amount of money in some currency and some regulations, find all IPs of the corresponding integer with properties such that the resulting transactions are not affected by applicable regulations.

(A) Transaction amount above a threshold of 1,000 Euro trig- (B) Transaction amounts below a threshold of 1,000 Euro avoid gering an alert.

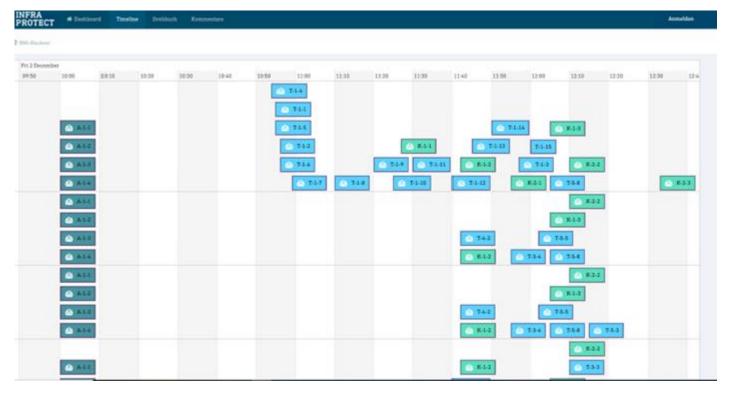
x=iter(Partitions(1000, min_part=10, max_part=200, min_length=5, max_length=20))

 Integer partitions (IPs) visualizing splitting of amounts (Cryptocurrencies, FIAT) that are below of threshold of 1000 (Satoshi or EUR)

• Such patterns comprised of integer partitions model money laundering transactions

[200, 200, 200, 200, 200], [200, 200, 200, 200, 190, 10],[200, 200, 200, 200, 189, 11], [200, 200, 200, 200, 188, 12],[200, 200, 200, 200, 187, 13], [200, 200, 200, 200, 186, 14],[200, 200, 200, 200, 185, 15], [200, 200, 200, 200, 184, 16],[200, 200, 200, 200, 183, 17], [200, 200, 200, 200, 182, 18].

Combinatorial Generation of (Cyber-) Threat Scenarios for the Steel Industry


[Ausfall_MAs, Proteste, Sperre_Graz_Ost, Ausfall_MAs, Rad_KFV, Proteste, OEBB] [Ueberfuellung_Lager, Sperre_Graz_Ost, Ausfall_MAs, WrLinien_LinzAG, Ueberfuellung_Lager, Rad_KFV, Ausfall_MAs] [Ueberfuellung_Lager, Datenportal_Autobauer, Proteste, Ueberfuellung_Lager, Cyberattacke_CS, WrLinien_LinzAG, LKW_Traktor] [Ueberfuellung_Lager, PKW_Glockner, Sperre_Graz_Ost, Ausfall_MAs, Datenportal_Autobauer, Rad_KFV, Ueberfuellung_Lager] [Ueberfuellung_Lager, Cyberattacke_DDOS, Sperre_Graz_Ost, Ausfall_MAs, LKW_Traktor, Ueberfuellung_Lager, OEBB] [Cyberattacke_CS, Sperre_Graz_Ost, Ausfall_MAs, PKW_Glockner, Cyberattacke_CS, Cyberattacke_DDOS, WrLinien_LinzAG]

Scenario 1	T-1-1	T-1-2	T-1-3	T-1-4	T-1-5	T-1-6	K-1-1
Scenario 2	T-1-2	T-1-1	K-1-6	K-1-5	K-1-4	K-1-3	K-1-2
Scenario 3	T-1-3	K-1-6	T-1-1	T-1-2	T-1-4	K-1-5	T-1-5
Scenario 4	T-1-4	K-1-6	T-1-3	K-1-2	T-1-2	K-1-1	T-1-1
Scenario 5	T-1-5	K-1-5	T-1-1	T-1-3	T-1-4	T-1-2	K-1-6
Scenario 6	K-1-1	T-1-6	T-1-2	K-1-6	T-1-3	K-1-5	T-1-5

Real-world Crisis Scenario in the Steel Industry:

- Production facility faces both physical and cyber-threats
- Crisis exercise tests resilience of response plans coordinated by Q&A-department
- Combinatorial generation methods can model cascading effects in such threat-scenarios that can cause response plan to fail production stop causes massive financial loss

MATRIS

Scenario Generation by Permutation of Weather States

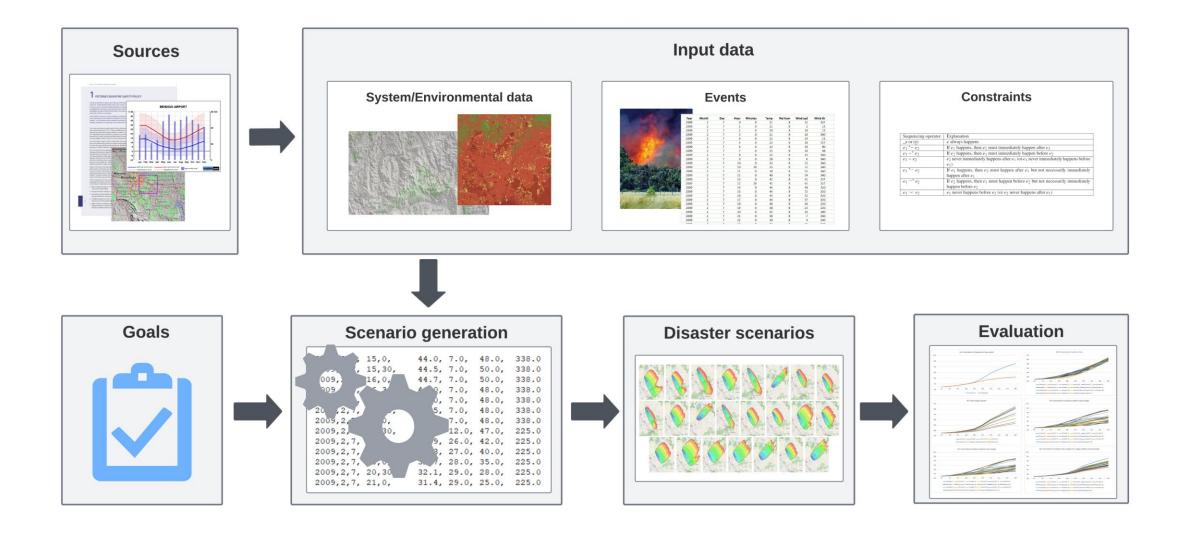
48.0, 338.0 Starting state (fixed) 338.0, 50.0, 7.0, 0. 0, Progress of scenario 50.0, 338.0 7.0, 0, 48.0 H B D G K C F А 48.0 F В K Н G E D В К F G E н D D G Е н В А 40.0 35.0, 225.0 29.028.0. 29.0. 0. 25.0, 0. 0,

Original sequence of weather states

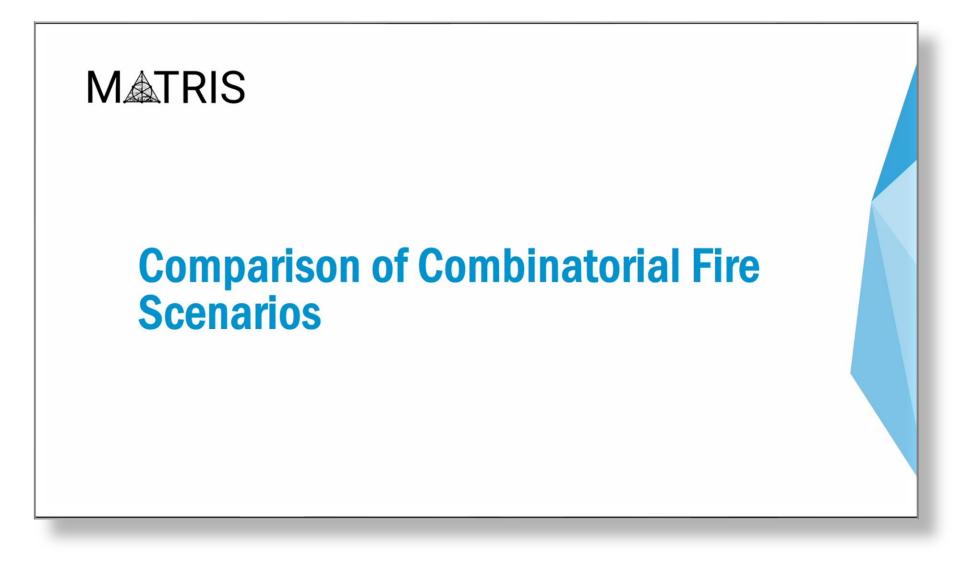
New sequence of weather states

Progress of scenario

44	.0,	0,	7.0,	0,	48.0,	0,	338.0
44	.7,	0,	7.0,	0,	50.0,	0,	338.0
44	.5,	0,	7.0,	0,	50.0,	0,	338.0,
31.	.4,	0,	29.0,	0,	25.0,	0,	225.0
32.	.1,	0,	29.0,	0,	28.0,	0,	225.0,
32.	.7,	0,	28.0,	0,	35.0,	0,	225.0
33.	.3,	0,	27.0,	0,	40.0,	0,	225.0
33.	.9,	0,	26.0,	0,	42.0,	0,	225.0
41.	.1,	0,	12.0,	0,	47.0,	0,	225.0
							338.0
42.	.5,	0,	7.0,	0,	48.0,	0,	338.0
							338.0
							220 0



А	В	С	D	Е	F	G	Н	1	J	K	L
B	Α	L	K	J		Η	G	F	Ε	D	С
С	L	А	В	D	K	E	J	F	1	G	Н
D	L	С	Н	В	G	А	1	J	К	Е	F


Sequence Covering Array (strength 3, cardinality 12)

MATRIS

Instantiation of Combinatorial Scenarios for Fire Simulation

Simulation: Comparison of two bushfire scenarios

Joint work with CSIRO, Australia

MATRIS

Integration of CT research into Teaching, Outreach and Policy Making

Course	Title	University	
VU 716.204	Selected Topics of Software Technology: Quantum Computing (Lectures and Exercises)	TU Graz	Master Theses
VO 716.201	Selected Topics in Computer Science: Combinatorial Testing (Lectures)	TU Graz	Topics available
UE 716.202	Selected Topics in Computer Science: Combinatorial Testing (Exercises)	TU Graz	(TUG/TUW/WU)
VU 188.916	Introduction to Security (Lectures and Exercises)	TU Wien	
VU 188.959	Software Security (Lectures and Exercises)	TU Wien	

Activity Report

HARNESSING STI FOR DISASTER RISK REDUCTION WORKSHOP

29 February-01 March 2024 Crimson Hotel, Alabang, Muntinlupa City, Philippines

A Joint initiative of the

Department of Science and Technology (DOST) of the Republic of the Philippines, Department of State of the United States of America, and the United Nations Conference on Trade and Development (UNCTAD)

Under the Philippines and United States of America membership in the Commission on Science and Technology for Development

Decision-making tool based on combinatorial methodology for best-use of resources or option for action intended for government actors and disaster risk managers. The model offers a decision tree following a combination and sequence of events that would trigger a response action or not.

The **MATRIS Disaster Game** is a board game designed for raising awareness and understanding about different *fundamental parameters of disasters*

Policy Recommendation Excerpt

Thank you very much for your attention!

Questions / Comments ?

<u>dsimos@sba-research.org</u> <u>https://matris.sba-</u> <u>research.org/publications/</u> (All mentioned works can be found above)

